CALCULATION POLICY

Maths Mastery

At the depth of the mastery approach to the teaching of mathematics is the belief that all children have the potential to succeed. They should have access to the same curriculum content and rather than being extended with new learning, they should deepen their conceptual understanding by tackling challenging and varied problems. Similarly, with calculation strategies, children must not simply rote learn procedures but demonstrate their understanding through the use of concrete materials and pictorial representations. This policy outlines the different calculation strategies that should be taught and used in EYFS through to Year 6 in line with the requirements of the 2014 Primary National Curriculum.

```
The quality and variety of language that pupils hear
and speak are key factors in developing their
mathematical vocabulary and presenting a
mathematical justification, argument or proof.
```

2014 Maths Programme of Study

Mathematical Language

The 2014 Primary National Curriculum is explicit in articulating the importance of children using the correct mathematical language as part of their learning (reasoning. Indeed, in certain year groups, the non-statutory guidance highlights the requirements for children to extend their language around certain concepts. It is therefore essential that teaching the strategies outlined in this policy is accompanied by the use of appropriate and precise mathematical vocabulary. New vocabulary should be introduced in a suitable context (for example, with relevant real objects, apparatus, pictures or diagrams) and explained carefully. High expectations of the mathematical language used are essential, with teachers only accepting what is correct. The agreed list of terminology is above each mathematical operation in this policy.

How to use the policy

This policy is a guide for all teaching staff. It is purposefully set out as a progression of mathematical skills and not into year group phases to encourage a flexible approach to teaching and learning. It is expected that teachers will use their professional judgement as to when consolidation of existing skills is required or if to move onto the next concept. However, the focus always must remain on breadth and depth rather than accelerating through concepts. Children should not be extended with new learning before they are ready, they should deepen their conceptual understanding by tackling challenging and varied problems.

For each of the four rules of number, different strategies are laid out, together with examples of what concrete materials can be used and how, along with suggested pictorial representations. The main concrete materials to be used within all year groups are Dienes/Base 10, Place Value counters and Cuisenaire rods. The principle of the concrete-pictorial-abstract (CPA) approach (make it, draw, write it) is for children to have a true understanding by mastering all these three phrases within each mathematical concept.

Calculation Policy: Addition Guidance

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Addition	Combining two parts to make a whole: part whole model Start with the bigger number and count on Regrouping to make 5 using the five frame	Combining two parts to make a whole: part whole model Start with the larger number and count on Regrouping to make 10 using the ten frame	Adding 3 single digit numbers Use of Base 10 to combine two numbers	Column method - regrouping Using Place value counters (up to 3 digits)	Column method regrouping (up to 4 digits)	Column method regrouping Place value with decimals	Column method with regrouping Abstract methods

Calculation policy - Addition

Key Language: sum, total, parts and wholes, plus, add, total, altogether, score, more, is equal to, is the same as, exchange, inverse

Addition

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
is the whole, \qquad is a part, \qquad is a part. _ = \qquad _ plus \qquad _and \qquad plus \qquad $=$ There are \qquad in total. Year R/1	$\begin{array}{ll} 3+4=7 & 7=3+4 \\ 4+3=7 & 7=4+3 \end{array}$ $\begin{array}{ll} 5+3=8 & 8=5+3 \\ 3+5=8 & 8=3+5 \end{array}$	$\begin{array}{ll} 3+2=5 & 2+3=5 \\ 5=3+2 & 5=2+3 \end{array}$	
First... Then... Now... e.g. First there were 4 children on the bus, then 3 children got on. Now there are 7 children on the bus. Year R/1	Role play getting 'on the bus' or use a toy bus.		
We can look for pairs of addends which sum to 10 . \qquad plus \qquad is equal to 10 , then 10 plus \qquad is equal to \qquad Year 2			$3+5+7=3+7+5=10+5=15$

First I partition the : _ \qquad plus \qquad is equal to Then \qquad plus \qquad is equal to ten ... and ten plus \qquad is equal to \qquad Year 2		$\begin{aligned} & 7+5= \\ & 7+3=10 \\ & 10+2=12 \end{aligned}$	
I know that \qquad plus \qquad is equal to \qquad (singledigit fact) So \qquad plus \qquad is equal to \qquad . (related twodigit plus single digit fact) I know that \qquad plus \qquad is equal to ten so \qquad plus \qquad is equal to \qquad _-. Year 2		$23+6=29$	
I know that \qquad plus \qquad is equal to \qquad So \qquad tens plus \qquad tens is equal to \qquad tens. \qquad tens and \qquad ones, plus \qquad tens is equal to \qquad tens and \qquad ones. Year 2	$40+30=70 \text { so } 45+30=75$	$45+30=75$	$\begin{aligned} & 2+3=5 \\ & 2 \text { tens }+3 \text { tens }=5 \text { tens } \\ & 20+30=50 \end{aligned}$

Adding 1	Bonds to 10	Adding 10	Bridging/compensating
Adding 2	Adding 0	Doubles	Near doubles

+	0	1	2	3	4	5	6	7	8	9	10
0	$0+0$	$0+1$	$0+2$	$0+3$	$0+4$	$0+5$	$0+6$	$0+7$	$0+8$	$0+9$	$0+10$
1	$1+0$	$1+1$	$1+2$	$1+3$	$1+4$	$1+5$	$1+6$	$1+7$	$1+8$	$1+9$	$1+10$
2	$2+0$	$2+1$	$2+2$	$2+3$	$2+4$	$2+5$	$2+6$	$2+7$	$2+8$	$2+9$	$2+10$
3	$3+0$	$3+1$	$3+2$	$3+3$	$3+4$	$3+5$	$3+6$	$3+7$	$3+8$	$3+9$	$3+10$
4	$4+0$	$4+1$	$4+2$	$4+3$	$4+4$	$4+5$	$4+6$	$4+7$	$4+8$	$4+9$	$4+10$
5	$5+0$	$5+1$	$5+2$	$5+3$	$5+4$	$5+5$	$5+6$	$5+7$	$5+8$	$5+9$	$5+10$
6	$6+0$	$6+1$	$6+2$	$6+3$	$6+4$	$6+5$	$6+6$	$6+7$	$6+8$	$6+9$	$6+10$
7	$7+0$	$7+1$	$7+2$	$7+3$	$7+4$	$7+5$	$7+6$	$7+7$	$7+8$	$7+9$	$7+10$
8	$8+0$	$8+1$	$8+2$	$8+3$	$8+4$	$8+5$	$8+6$	$8+7$	$8+8$	$8+9$	$8+10$
9	$9+0$	$9+1$	$9+2$	$9+3$	$9+4$	$9+5$	$9+6$	$9+7$	$9+8$	$9+9$	$9+10$
10	$10+0$	$10+1$	$10+2$	$10+3$	$10+4$	$10+5$	$10+6$	$10+7$	$10+8$	$10+9$	$10+10$

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
I kn \qquad plus \qquad is equal to \qquad (single-digit addends) So \qquad tens plus \qquad tens is equal to \qquad tens. (multiple-of-ten addends) \qquad plus \qquad is equal to one hundred and __. Year 3		$\begin{aligned} & 70+50= \\ & 70+30=100 \\ & 100+20=120 \end{aligned}$	$\begin{aligned} & \quad 70 \cdot+)^{50}=120 \\ 70+50 & =70+30+20 \\ = & 100+20 \\ = & 120 \end{aligned}$
I know that \qquad plus \qquad is equal to \qquad (single-digit addends) So \qquad tens plus \qquad tens is equal to \qquad tens. (multiple-of-ten addends) \qquad plus \qquad is equal to one hundred and __. Year 3	$87+30=110+7=117$	$\begin{aligned} 87+30 & =80+30+7 \\ & =110+7 \\ & =117 \end{aligned}$	$\begin{aligned} 87+30 & =80+7+30 \\ & =110+7 \\ & =117 \end{aligned}$
First we add: \qquad plus \qquad is equal to \qquad then we adjust: \qquad minus \qquad is equal to \qquad Year 3		$\begin{aligned} & 520+299= \\ & 520+300=820 \\ & 820-1=819 \end{aligned}$	$\begin{aligned} & \mathbf{6 9 + 6 9}=138 \\ & 70+70=140 \end{aligned}$

If the column sum is equal to ten or more, we must regroup. Year 4	See Year 3 examples	See Year 3 examples	
If the column sum is equal to ten or more, we must regroup. Years 5 and 6	See Year 3 examples	See Year 3 examples	As in Year 4 but using numbers with more than 4 digits

Addition - Key mental strategies for Key Stage 2

Strategy	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
Bridging through a multiple of 10,100 , etc Years 3, 4, 5 and 6		$\begin{aligned} & 7+5= \\ & 7+3=10 \\ & 10+2=12 \end{aligned}$	
Compensating - rounding to the nearest multiple 10, 100, etc and adjusting Years 3, 4, 5 and 6	$35+49=34+50=84$	$\begin{aligned} & 520+299= \\ & 520+300=820 \\ & 820-1=819 \end{aligned}$	$\begin{aligned} & 69+69=138 \\ & 70+70=140 \end{aligned}$

Calculation Policy: Subtraction Guidance

Subtraction	Counting back Taking away ones Part whole model Making 5 using the five frame	Counting back Taking away ones Find the difference Part whole model Make 10 using the 10 frame	Counting back Find the difference Part whole model Make 10 Use of Base 10	Column method with regrouping (up to 3 digits using Place value counters	Column method with regrouping	Column method with regrouping Abstract for whole numbers Place value with decimals	Column method with regrouping Abstract methods

Calculation policy - Subtraction

Key Language: take away, less than, the difference, subtract, minus, fewer, decrease, exchange, answer, inverse

Subtraction

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
\qquad is the whole, \qquad is a part, \qquad is a part. __ = \qquad minus \qquad and \qquad minus \qquad $=$ \qquad Year R/1	I have 8 counters. 5 counters are red. How many are blue?	There are 6 children. 2 have their coat on. How many do not have their coat on?	There are 8 flowers. 2 are red and the rest are yellow. How many are yellow? $8-2=6$
First... Then... Now... e.g. First there were 4 children in the car, then 1 child got out. Now there are 3 children in the car. Year R/1	Role play 'getting out of a car'.		

We partition the in \qquad into \qquad and _- First we subtract the \qquad from \qquad to get to 10 . Then we subtract the remaining \qquad from 10. We know 10 minus \qquad is equal to \qquad Year 2	$\begin{aligned} & 12-4= \\ & 12-2=10 \\ & 10-2=8 \end{aligned}$ 12 -	First there were 12 children on the ride. Then 4 got off. Now there are 8 children on the ride.	$\begin{aligned} & 12-4= \\ & 12-2=10 \\ & 10-2=4 \end{aligned}$
There are more \qquad than \qquad There are fewer \qquad than \qquad The difference between \qquad and \qquad is \qquad Year 2	The difference between 2 and 5 is 3 . The difference between 5 and 2 is 3 .	The difference between 4 and 7 is 3 . The difference between 7 and 4 is 3 .	5 red cars 3 hlue cars $5-3=2$
I know that \qquad minus \qquad is equal to \qquad (single-digit fact) So \qquad minus \qquad is equal to \qquad . (related twodigit minus single digit fact) I know that ten minus \qquad is equal to \qquad so minus \qquad is equal to \qquad Year 2	$\begin{aligned} & 7-3=4 \\ & 47-3=44 \end{aligned}$	$\begin{aligned} & 9-3=6 \\ & 99-3=96 \end{aligned}$	
I know that \qquad minus \qquad is equal to \qquad So \qquad tens minus \qquad tens is equal to \qquad tens. Year 2	$70-30=40 \text { so } 75-30=45$	$75-30=45$	$5-3=2$ 5 tens -3 tens $=2$ tens $50-30=20$

First I subtract the tens, then I subtract the ones. Year 2	$\begin{aligned} & 45-23= \\ & 45-20=25 \\ & 25-3=22 \end{aligned}$		$45-23=22$
First I subtract the tens, then I subtract the ones. Year 2			$63-17=46$
I know that \qquad minus \qquad is equal to \qquad (bridging ten) So \qquad tens minus \qquad tens is equal to \qquad tens. (bridging ten tens) One hundred and \qquad minus \qquad is equal to \qquad Year 3	See Year 2 (bridging)	$\begin{aligned} & 120-30= \\ & 120-20=100 \\ & 100-10=90 \end{aligned}$	$\begin{aligned} & 120 \cdot 30=90 \\ & \qquad=10 \\ & 120-30= \\ & 120-20=100 \\ & 100-10=90 \end{aligned}$
I know that \qquad minus \qquad is equal to \qquad (bridging ten) So \qquad tens minus \qquad tens is equal to \qquad tens. (bridging ten tens) One hundred and \qquad minus \qquad is equal to \qquad Year 3	$126-70=56$		$\begin{aligned} & \\ 126-70 & =120-70+6 \\ & =50+6 \\ & =56 \end{aligned}$

We partition the \qquad int \qquad and _. First we subtract the \qquad from \qquad to get to a multiple of 10 . Then we subtract the remaining \qquad from the multiple of 10 . We know 10 minus \qquad is equal to \qquad so \qquad minus \qquad is equal to \qquad Year 3		$544-16$	Count back to multiples of 10/100
We partition the \qquad into \qquad and __. First we add the \qquad to \qquad to get to 100. Then we add the remaining \qquad to 100. We know 100 plus \qquad is equal to \qquad Year 3		$123-97=26$	Count on to multiples of 10/100

If there is an insufficient number to subtract from in a given column, we must exchange from the column to the left. Year 4	See Year 3 examples	See Year 3 examples	
If there is an insufficient number to subtract from in a given column, we must exchange from the column to the left. Years 5 and 6	See Year 3 examples	See Year 3 examples	As in Year 4 but using numbers with more than 4 digits

Subtraction - Key mental strategies for Key Stage 2

Strategy	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
Bridging through a multiple of 10,100 , etc Years 3, 4, 5 and 6	$\begin{aligned} & 12-4= \\ & 12-2=10 \\ & 10-2=8 \end{aligned}$ $12-/_{2}^{4} \backslash_{2}$	$\begin{aligned} & 120-30= \\ & 120-20=100 \\ & 100-10=90 \end{aligned}$	$\begin{aligned} & 120 \cdot{ }^{120}=90 \\ & 100 \\ & 120-30= \\ & 120-20=100 \\ & 100-10=90 \end{aligned}$
Compensating - rounding to the nearest multiple 10, 100, etc and adjusting Years 3, 4, 5 and 6			$\begin{aligned} & 152-30=122 \\ & 122+1=123 \end{aligned}$

Calculation Policy: Multiplication Guidance

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Multiplication	ELG: solve problems, including doubling	Doubling	Arrays showing commutative multiplication	Arrays $2 d \times 1 d$	Column multiplication - introduced with place value counters (2 and 3 digit multiplied by 1 digit)	Column multiplication Abstract only but might need a repeat of year 4 first (up to 4 digit numbers multiplied by 1 or 2 digits)	Column multiplication Abstract methods

Multiplication

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
One group of two, two groups of two, three groups of $2, \ldots$ Ten, twenty, thirty, ... One five, two fives, three fives, ... Year R/1			10, 20, 30, ...
There are \qquad coins. Each coin has a value of \qquad p. This is \qquad _p. Year 1	Representing each group by one object		Five $2 p$ coins $=10 p$

If there is a multiplicative increase in one
factor and a multiplicative decrease in the
other, the product remains the same.
If m multiply one factor by \quad, I must divide
the other factor by _ for the product to
remain the same.
Year 5 and $\mathbf{6}$

$$
\text { Multiplication - Key mental strategies for Key Stage } 2
$$

Strategy Adjacent multiples of \qquad have a difference of -. Year 3 onwards	Concrete (Can we make it?)				Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
	$600^{2} 000000000$ (4) 4. 4. (4) (4)					$\begin{aligned} & 4 \times 6=4 \times 5+4 \\ & 4 \times 9=4 \times 10-4 \end{aligned}$
Products in the 10 times table are double the products in the 5 times table. Products in the 5 times table are half of the products in the 10 times table. (NCETM Year 2 unit 2.5) Year 3 onwards						$5 \times 4=10 \times 2$
Products in the 4 times table are double the products in the 2 times table. Products in the 2 times table are half of the products in the 4 times table. Year 3 onwards						$2 \times 6=4 \times 3$
Products in the 8 times table are double the products in the 4 times table. Products in the 4 times table are half of the products in the 8 times table. Year 3 onwards			$\begin{aligned} & \text { 明 } \\ & \text { is } \\ & \text { c } \\ & \text { e } \\ & 4 \\ & 4 \end{aligned}$	4		$4 \times 6=8 \times 3$

Calculation Policy: Division Guidance

	EYFS	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Division	ELG: solve problems, including halving and sharing	Sharing objects into groups	Division as grouping Division within arrays - linking to multiplication Repeated subtraction	Division with a remainder 2d divided by 1 d using base 10 or place value counters	Division with a remainder Short division (up to 3 digits by 1 digit concrete and pictorial)	Short division (up to 4 digits by a 1 digit number including remainders)	Short division Long division with place value counters (up to 4 digits by a 2 digit) Children should exchange into the tenths and hundredths column too.

Calculation policy - Division

Key Language: halve, half, share, group, repeated subtraction, divide, divided by, divisor, dividend, quotient

Division

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	6 biscuits shared between 2 children gives
One group of two, two groups of two, three			
groups of 2, ...	3 biscuits each.		
Ten, twenty, thirty, ...			
One five, two fives, three fives, ...			
Year R/1			

The \qquad costs \qquad p. Each coin has a value of \qquad p. So I need \qquad coins. Year 1			Five $2 p$ coins $=10 p$
\qquad is divided into groups of \qquad There are \qquad groups. We can skip count using the divisor to find the quotient. Year 2			$\begin{aligned} & 5+5+5=15 \\ & 15 \div 5=3 \end{aligned}$
\qquad divided between \qquad is equal to \qquad each. We can skip count using the divisor to find the quotient. Year 2			One 5 is 1 each. That's 5. Two 5 s is 2 each. That's 10. $10 \div 5=2$
Ten times \qquad is equal to \qquad so \qquad divided into groups of ten is \square If the divisor is \qquad we can use the \qquad times table to find the quotient. Year 2	30 represents the total number of counters. 10 represents the number in each group. 3 represents the number of groups.		$\begin{aligned} & 10 \times 3=30 \\ & 3 \times 10=30 \\ & 30 \div 10=3 \end{aligned}$

\qquad is divided into groups of \qquad . There are \qquad groups and a remainder of \qquad (NCETM Year 4 unit 2.12) Year 3							$\begin{aligned} & 14=4 \times 3+2 \\ & 14 \div 4=3 r 2 \end{aligned}$
\qquad is a multiple of \qquad so when it is divided into groups of \qquad , there is no remainder. The remainder is always less than the divisor. (NCETM Year 4 unit 2.12) Year 3 or 4?					2^{108}		$17 \div 5=2 r 7$ is incorrect because 7 is greater than 5 . $17 \div 5=3 r 2$
When dividing by 10 it will make the number 10 times smaller. Year 4		$\downarrow \div 10$	$1,000 \mathrm{~s}$	100s	10s 9 10 $\substack{\text { imes } \\ \text { size }}$	1s 0 9	$90 \div 10=9$ $150 \div 10=15$
When dividing by 100 it will make the number 100 times smaller. Year 4		$\downarrow+100$	1,000s	1005	(10s10s 0	0	$900 \div 100=9$ $1500 \div 100=15$

If the dividend is made ten times the size, the quotient will be ten times the size. Year 4	$8 \div 4=2$ $80+4=20$	-20 (-20) (-20) (-20)	$\begin{array}{r} 12 \\ \times\left. 10\right\|^{12} \end{array}$				$\begin{aligned} & \frac{4}{4} \\ & 40 \\ & \times 4 \end{aligned}$	
If dividing the tens gives a remainder of one or more tens, we must exchange the remaining tens for ones. Year 4	$84 \div 4=21$		8 tens 4 ones 84$\begin{gathered} 6 \text { tens } \\ 21 \text { ones } \\ \hline 81 \end{gathered}$			$\begin{array}{r}4 \\ 4 \\ 4 \\ \\ \\ 4 \\ 3 \\ \hline\end{array}$	$\begin{aligned} & = \\ & = \\ & = \end{aligned}$	2 tens 1 one 21 2 tens $\frac{7 \text { ones }}{27}$
If dividing the tens gives a remainder of one or more tens, we must exchange the remaining tens for ones. Year 4		$72 \div 3=24$	103 2 4 4 8 $2 \quad 1$ $4 \longdiv { 8 \quad 4 }$ $3 \begin{array}{rr}2 \quad 4 \\ 7 \quad{ }^{1} 2\end{array}$		8 tens $\div 4=2$ tens 4 ones $\div 4=1$ one			

			$\begin{array}{r} 24 \mathrm{r} 1 \\ 3 \longdiv { 7 ^ { 1 } 3 } \end{array}$
If dividing the hundreds gives a remainder of one or more hundreds, we must exchange the remaining hundreds for tens. Year 4			212 $4 \lcm{848}$ $14 \quad 1$ $5 \longdiv { 7 2 0 5 }$

If the dividend is made one tenth of the size, the quotient will be one tenth of the size. If the dividend is made one hundredth of the size, the quotient will be one hundredth of the size. I move the digits of the dividend \qquad places to the left until I get a whole number; then I divide; then I move the digits of the quotient __ places to the right. Year 5 onwards				$5 \longdiv { 0 \quad 5 \quad 1 } \begin{array} { r } { 0 } \\ { 2 ^ { 2 } 5 \quad 5 } \end{array} \frac { 0 \quad 5 \cdot 1 } { 5 } \begin{array} { r } { 2 ^ { 2 } 5 \cdot 5 } \end{array}$
Any two-, three- or four-digit dividend can be divided by a two-digit divisor using skipcounting in multiples of the divisor, or by short division or long division. Year 6		Partitioning	Short division $31 \lcm{0} 81 \quad 4$	Long division

The Importance of Bar Modelling

A bar model is a pictorial representation of a problem or concept where bars or boxes are used to represent the known and unknown quantities. Bar models are most often used to solve number problems with the four operations.
Because bar models only require pencils and paper, they are highly versatile and can come in very useful for tests, especially SATs Reasoning Papers.
However the use of bar models can begin much earlier, from showing number bonds to ten or partitioning numbers as part of your place value work.
Once a child is secure in their use of bar modelling for the four operations and can conceptualise its versatility, they can start to use it to visualise many other maths topics

Teaching the Four Operations with Bar Models

Bar models can be used in other areas of maths

Sami has 12 balloons. $\frac{2}{3}$ of them are green. How many are green?

Problem Solving

Aliya has 4 oranges. Alfie has 3 oranges. How many oranges are there altogether?

Aliya's oranges

Aline's oranges

On Monday Lisa sold 72 chocolate bars. On Tuesday she sold 15 more than she sold on Monday. How many chocolate bars did she sell altogether?

$$
72+72+15=159 \text { chocolate bars }
$$

Jinnie is 134 cm tall. Her sister is 107 cm tall. How much taller is Jinnie than her sister?

National Curriculum

Mathematics Appendix 1: Examples of formal written methods for addition, subtraction, multiplication and division

This appendix sets out some examples of formal written methods for all four operations to illustrate the range of methods that could be taught. It is not intended to be an exhaustive list, nor is it intended to show progression in formal written methods. For example, the exact position of intermediate calculations (superscript and subscript digits) will vary depending on the method and format used.

Addition and subtraction

Short multiplication

24×6 becomes

Answer: 144
342×7 becomes

Answer: 2394
2741×6 becomes

Answer: 16446

Long multiplication

24×16 become		
2		
	2	4
\times	1	6
2	4	0
1	4	4
3	8	4

Answer: 384
124×26 becomes

	1	2		
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$	
\times		$\mathbf{2}$	6	
$\mathbf{2}$	$\mathbf{4}$	$\mathbf{8}$	$\mathbf{0}$	
	$\mathbf{7}$	$\mathbf{4}$	$\mathbf{4}$	
$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{4}$	
1	1			
Answer: 3224				

124×26 becomes

	1	2	
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{4}$
\times	$\mathbf{2}$	6	
	$\mathbf{7}$	$\mathbf{4}$	$\mathbf{4}$
$\mathbf{2}$	$\mathbf{4}$	$\mathbf{8}$	0
$\mathbf{3}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{4}$
1	1		
Answer: 3224			

Short division

$98 \div 7$ becomes

1		4

9\end{gathered} 8\)
Answer: 14
$432 \div 5$ becomes

Answer: 86 remainder 2
$496 \div 11$ becomes
 Answer: $45 \frac{1}{11}$

Long division

$$
\begin{aligned}
& 432 \div 15 \text { becomes }
\end{aligned}
$$

Answer: 28 remainder 12
$432 \div 15$ becomes

$$
\frac{12}{15}=\frac{4}{5}
$$

Answer: $28 \frac{4}{5}$
$432 \div 15$ becomes

			2	8	8
		4	3	2	0

$$
\begin{array}{cccc}
3 & 0 & \downarrow & \\
\hline 1 & 3 & 2 & \\
1 & 2 & 0 & \downarrow \\
\hline & 1 & 2 & 0 \\
& 1 & 2 & 0 \\
\hline & & & 0
\end{array}
$$

Answer: 28.8

